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In order to measure 
an event in time,
you need a shorter one.

To study this event, you need a 
strobe light pulse that’s shorter.

But then, to measure the strobe light pulse, 
you need a detector whose response time is even shorter.

And so on…

So, now, how do you measure the shortest event?

Photograph taken by Harold Edgerton, MIT

The Dilemma



Ultrashort laser pulses are the shortest 
technological events ever created by humans.
It’s routine to generate pulses < 1 picosecond (10-12 s).
Researchers generate pulses a few femtoseconds (10-15 s) long.

Such a pulse is to one second as 5 cents is to the US national debt.

Such pulses have many applications in physics, chemistry, biology, and 
engineering. You can measure any event—if you have a pulse that’s 
shorter.
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So how do you measure the pulse itself?

You must use the pulse to measure itself.

But that isn’t good enough.  It’s only as short as the pulse.  
It’s not shorter.

Example: Intensity Autocorrelation

( ) ( )I t I t dtτ
∞

−∞
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where I(t) = pulse intensity

Techniques based on using the pulse to measure itself have not 
sufficed.



A laser pulse has the time-domain electric field:

Intensity Phase

Equivalently, vs. frequency:

Spectral 
Phase

(neglecting the
negative-frequency

component)

We must measure an ultrashort laser pulse’s
intensity and phase vs. time or frequency.

Spectrum

Knowledge of the intensity and phase or the spectrum and spectral 
phase is sufficient to determine the pulse.
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The instantaneous frequency:

Example: “Linear chirp” 
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We’d like to be able to measure,
not only linearly chirped pulses,
but also pulses with arbitrarily complex 
phases and frequencies vs. time.

The phase determines the pulse’s frequency 
(i.e., color) vs. time.
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Autocorrelations have ambiguities.
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These intensities have the same, nearly Gaussian, autocorrelations.

Retrieving the intensity from the autocorrelation is equivalent to 
the 1D Phase-Retrieval Problem, a well-known unsolvable problem.

Intensity Autocorrelation

Time Delay



Time

Intensity

Phase

Perhaps it’s time to ask how researchers in other fields deal 
with their waveforms…

Consider, for example, acoustic waveforms.

Autocorrelation and related techniques 
yield little information about the pulse.
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It’s a plot of frequency vs. time, with info on top about intensity. 

The musical score lives in the “time-frequency domain.”

Most people think of acoustic waves in 
terms of a musical score.
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If E(t) is the waveform of interest, its spectrogram is:

2

( , ) ( ) ( ) exp( )E E t g t i t dtω τ τ ω
∞

−∞
Σ ≡ − −∫

where g(t-τ) is a variable-delay gate function and τ is the delay.

Without g(t-τ), ΣE(ω,τ) would simply be the spectrum.

A mathematically rigorous form of the 
musical score is the “spectrogram.”

The spectrogram is a function of ω and τ.

It is the set of spectra of all temporal slices of E(t).

The spectrogram is one of many time-frequency quantities, such 
as the Wigner Distribution, Wavelet Transform, and others.



g(t-τ)
E(t)

time0 τ

g(t-τ) contributes 
only intensity, not 
phase (i.e., color), 
to the signal pulse.

E(t) contributes 
phase (i.e., color), 

to the signal pulse.

E(t) g(t-τ)

The Spectrogram of a waveform E(t)

The spectrogram tells the color and intensity of E(t) at the time, τ.

We must compute the spectrum of the product:  E(t) g(t-τ)

E(t) g(t-τ)

E(t)

g(t-τ) g(t-τ) gates out a 
piece of E(t), 
centered at τ.

Example:  
Linearly 
chirped 
Gaussian 
pulse



Spectrograms for Linearly Chirped Pulses

Like a musical score, the spectrogram visually displays the 
frequency vs. time (and the intensity, too).
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Properties of the Spectrogram

The spectrogram resolves the dilemma!  It doesn’t need the 
shorter event!  It temporally resolves the slow components and 
spectrally resolves the fast components.

Algorithms exist to retrieve E(t) from its spectrogram.

The spectrogram essentially uniquely determines the waveform 
intensity, I(t), and phase, φ(t).

There are a few ambiguities, but they’re “trivial.”

The gate need not be—and should not be—much shorter than E(t).
Suppose we use a delta-function gate pulse:

2
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2( )E τ= = The Intensity.
No phase information!



“Polarization Gate” Geometry

Frequency-Resolved Optical Gating (FROG)

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, Kluwer

Nonlinear
medium (glass)

Pulse to be 
measured

Variable  
delay, τ

Camera

Beam
splitter

E(t)

E(t-τ)

Esig(t,τ) = E(t) |E(t-τ)|2

FROG involves gating the pulse with a variably delayed replica 
of itself in an instantaneous nonlinear-optical medium and then 
spectrally resolving the gated pulse vs. delay.

45°
polarization 

rotation

Use any ultrafast nonlinearity: Second-harmonic generation, etc.

2
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Collaborator: 
Dan Kane



FROG 2( , ) ( ) ( )sigE t E t E tτ τ∝ −

E(t-τ)E(t)

time0 τ

Signal pulse

2τ/3

|E(t-τ)|2 contributes 
only intensity, not 
phase (i.e., color), 
to the signal pulse.

E(t) contributes 
phase (i.e., color), 

to the signal pulse.
E(t-τ) gates out a  
piece of E(t), 
centered at 

about 2τ/3 
(for Gaussian 

pulses).

E(t) E(t-τ)
Signal pulse

The gating is more complex for complex pulses, but it still works. 
And it also works for other nonlinear-optical processes.

time



FROG Traces for Linearly Chirped Pulses

Like a musical score, the FROG trace visually reveals the pulse 
frequency vs. time—for simple and complex pulses.

10 20 30 40 50 60

10

20

30

40

50

60

SHG FROG trace--expanded

10 20 30 40 50 60

10

20

30

40

50

60

FROG trace--expanded

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Time

Delay

Negatively chirped          Unchirped            Positively chirped



Unfortunately, spectrogram inversion algorithms require that 
we know the gate function, and that’s what we’re trying to find! 

Substituting for Esig(t,τ) in the expression for the FROG trace:

yields:

Esig(t,τ) ∝ E(t) |E(t–τ)|2

IFROG (ω,τ ) ∝ Esig(t,τ) exp(−iωt ) dt∫
2

IFROG (ω,τ ) ∝ E(t) g(t −τ ) exp(−iωt) dt∫
2

where: g(t–τ) =  |E(t–τ)|2

The FROG trace is a spectrogram of E(t).



If Esig(t,τ), is the 1D Fourier transform with respect to Ω of some 
new signal field, , then:

So we must invert this integral equation and solve for

This integral-inversion problem is the 2D phase-retrieval problem,
for which the solution exists and is (essentially) unique.
And simple algorithms exist for finding it.

2
ˆ( , ) ( , ) exp( )FROG sigI E t i t i dt dω τ ω τ= Ω − − Ω Ω∫∫

and

The input pulse, E(t), is easily obtained from

Consider FROG as a two-dimensional 
phase-retrieval problem.

2

( , ) ( , ) exp( )FROG sigI E t i t dtω τ τ ω= −∫

ˆ ˆ( , ) : ( ) ( ,0)sig sigE t E t E tΩ ∝

ˆ ( , ).sigE t Ω

ˆ ( , )sigE t Ω



1D Phase Retrieval:  Suppose we measure S(ω) and desire E(t), where: 

Given S(kx,ky), there is essentially one solution for E(x,y)!!!
It turns out that it’s possible to retrieve the 2D spectral phase!

.

Given S(ω), there are infinitely many solutions
for E(t).  We lack the spectral phase.

2D Phase Retrieval:  Suppose we measure S(kx,ky) and desire E(x,y):

These results are related to the Fundamental Theorem of Algebra.

2

( ) ( ) exp( )S E t i t dtω ω
∞

−∞
= −∫

2

( , ) ( , ) exp( )x y x yS k k E x y ik x ik y dx dy
∞ ∞

−∞ −∞
= − −∫ ∫

1D vs. 2D Phase Retrieval

Stark, 
Image Recovery, 
Academic Press, 

1987.

We assume that 

of finite extent.
E(t) and E(x,y) are 



The Fundamental Theorem of Algebra states that all polynomials 
can be factored:

fN-1 zN-1 +  fN-2 zN-2 + … +  f1 z + f0 =    fN-1 (z–z1 ) (z–z2 ) … (z–zN–1) 

The Fundamental Theorem of Algebra fails for polynomials of two 
variables.  Only a set of measure zero can be factored.

fN-1,M-1 yN-1 zM-1 +  fN-1,M-2 yN-1 zM-2 + … + f0,0 =   ?

Why does this matter?

The existence of the 1D Fundamental Theorem of Algebra implies 
that 1D phase retrieval is impossible.

The non-existence of the 2D Fundamental Theorem of Algebra 
implies that 2D phase retrieval is possible.

Phase Retrieval and the Fundamental Theorem of Algebra



The Fourier transform {F0 , … , FN-1} of a discrete 1D data set, 
{ f0 , …, fN-1}, is:

Fk ≡ fm e−imk

m = 0

N −1

∑ = fm zm

m = 0

N −1

∑ where z = e–ik

The Fundamental Theorem of Algebra states that any polynomial,
fN-1zN-1 + … + f0 , can be factored to yield: fN-1 (z–z1 ) (z–z2 ) … (z–zN–1) 

So the magnitude of the Fourier transform of our data can be written:

|Fk|  =  | fN-1 (z–z1 ) (z–z2 ) … (z–zN–1) | where z = e–ik

Complex conjugation of any factor(s) leaves the magnitude unchanged,
but changes the phase, yielding an ambiguity!  So 1D phase retrieval is
impossible!

1D Phase Retrieval & the Fundamental Theorem of Algebra

polynomial!



The Fourier transform {F0,0 , … , FN-1,N-1} of a discrete 2D data 
set, { f0.0 , …, fN-1,N-1}, is:

Fk ,q ≡ fm, p e− imk

p = 0

N −1

∑ e− ipq

m = 0

N −1

∑ = fm, p ymz p

p = 0

N −1

∑
m = 0

N −1

∑
where  y = e–ik

and      z = e–iq

But we cannot factor polynomials of two variables.  So we can only 
complex-conjugate the entire expression (yielding a trivial ambiguity).

Only a set of polynomials of measure zero can be factored.
So 2D phase retrieval is possible!  And the ambiguities are very sparse.

2D Phase Retrieval and the Fundamental 
Theorem of Algebra

Polynomial of 2 variables!



Generalized Projections

Convergence is guaranteed for convex sets, but generally occurs 
even with non-convex sets and in particular in FROG.

A projection maps the current guess for the waveform to 
the closest point in the constraint set.

Collaborator: Ken DeLong, 
Femtosoft Technologies

2

( , ) ( , ) exp( )FROG sigI E t i t dtω τ τ ω∝ −∫

The 
Solution!

Initial guess 
for Esig(t,τ)

Set of Esig(t,τ) that satisfy the 
nonlinear-optical constraint: 

Esig(t,τ) ∝ E(t) |E(t–τ)|2

Set of Esig(t,τ) that satisfy 
the data constraint:



Ultrashort pulses measured using FROG

FROG
Traces

Retrieved
pulses

Data courtesy of Profs. Bern Kohler and Kent Wilson, UCSD.



FROG Measurements of a 4.5-fs Pulse!

Baltuska, 
Pshenichnikov, 
and Weirsma,
J. Quant. Electron., 
35, 459 (1999).



Frontiers in ultrashort-pulse measurement

Measurement of very complex 
pulses (continuum)

Measurement of noisy trains 
of pulses (continuum)

Measurement of ultraweak, spatially incoherent pulses 
with random absolute phase (sub-ps fluorescence)

Development of a practical alignment-free pulse-
measurement device (GRENOUILLE)

Measurement of spatio-temporal pulse distortions* 
(e.g., spatial chirp and pulse-front tilt)

*This device should not itself introduce these distortions!

Spectrum and spectral phase



Microstructure fiber yields 
ultrabroadband continuum.

The continuum 
has many 
applications, 
from medical 
imaging to 
metrology.

It’s a important 
to measure it.

Photographs courtesy of 
Jinendra Ranka, Lucent



Measurements of the microstructure-fiber 
continuum have yielded a broad, smooth, 
and stable spectrum.

A typical microstructure-fiber 
continuum spectrum generated 
in our lab by a train of 30-fs 
Ti:Sapphire oscillator pulses.

Unfortunately, only one of these adjectives is in fact true! 
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XFROG:  Gating a pulse with another pulse

2

( , ) ( ) ( ) exp( )XFROG c gI E t E t i t dtω τ τ ω
∞

−∞

= − −∫
The XFROG trace is the usual spectrogram. 

Sum-
frequency-
generation 

(SFG)
crystal

Camera

Spec-
trometer

Esig(t,τ) = Ec(t) Eg(t–τ)

Eg(t–τ)

Gate pulse

Variable  
delay, t

Ec(t)
Continuum

Curved mirror

XFROG first 
developed by 
Kuhl and 
coworkers

It’s better to gate a complicated pulse with a simple (known) one.



XFROG measurement of the continuum

Measured Retrieved

While the large-scale structure of each trace is identical, the 
measured trace lacks the fine-scale structure of the retrieved trace.

8192 x 8192 
trace! 

Measured over 
1011 shots.

Collaborators:
Xun Gu,
Lin Xu,

Qiang Cao,
Erik Zeek



XFROG-measured intensity and phase of 
the microstructure-fiber continuum

Time domain Frequency domain

The XFROG-measured 
spectrum contains much 
more structure than the 
spectrum-measured 
with a spectrometer.

Which spectral 
measurement is correct?

Spectrometer spectrum

Aver-
aged 
over 
105

shots



Single-shot spectra reveal fine structure!

Despite averaging over 1011 shots, FROG still sees the structure!

Manual average of 
four consecutive 
single-shot spectrum 
measurements

Individual single-
shot spectra

Sending a single continuum pulse into a spectrometer, yields its 
true spectrum.

100-nm section of the continuum



Why does FROG see the spectral structure 
when even the few-shot spectrum doesn’t?

FROG sees the missing structure because it 
operates in the time-frequency domain.

Frequency structure is tagged by its time and 
so is less likely to wash out.

Even when it does, the trace area yields the 
time-bandwidth product, so it still indicates a 
complex pulse.



Measurement of Ultraweak Fluorescence

Not all ultrashort pulses 
are generated by lasers.  

Biologically important  
fluorescence is necessarily 
weak and ultrafast.

Knowledge of the 
fluorescence intensity and 
phase vs. time would yield 
important information 
about molecular dynamics 
in the fluorescing 
molecule. 

Excitation to excited state

Emission

Ground state

Excited 
state

Existing techniques cannot measure the phase evolution of weak 
fluorescence.



Spectral Interferometry

SSI (ω ) = Sref (ω ) + Sunk (ω) + 2 Sref (ω ) Sunk (ω ) cos[φunk (ω ) − φref (ω ) −ωτ ]

The absolute phase (the constant-phase term) in 
fluorescence is random, washing out the SI fringes and 
preventing multi-shot measurements.

Spatial incoherence severely limits the number of spatially 
coherent photons generated by an incoherent (i.e., 
fluorescent) source.

cannot measure weak fluorescence.

Previously, we 
showed that SI 
could measure a 
train of pulses with 
less than one photon 
each.



Gating with gain in XFROG

Absolute phase and spatial coherence don’t affect FROG measurements. 
We must, however, modify the FROG algorithm for these processes:  
the gate function is now: exp[g|Egate(t)|].  But this is easy.

Optical parametric amplification (OPA) and Difference-Frequency 
Generation (DFG) have exponential gain (up to ~106). This doesn’t 
distort the phase, and huge bandwidths are also possible. Perfect!

Collaborators:
Stephan Link, 

Aparna Shreenath, 
Jing Zhang, and 

Xuan Liu

Look at either the OPA 
or DFG signal pulse.



But what pulse will we use for the 
XFROG gate pulse?

Requirements for the 
Fluorescence Excitation Pulse
(relative to the fluorescence):

Shorter

Synchronized

Bluer

Brighter

Requirements for the 
OPA or DFG XFROG Gate Pulse
(relative to the fluorescence):

Shorter

Synchronized

Bluer

Brighter

Remarkably, the fluorescence excitation pulse will essentially 
always provide an ideal XFROG gate pulse.



OPA XFROG measurements of a weak 
(80 fJ) fluorescence-like pulse

Comparison with an 
already well-
established 
technique, SFG 
XFROG (measuring 
the same pulse, but 
less attenuated).

Fluorescence-
like test pulse: 
continuum 
created in bulk 
sapphire 
(spectrally 
filtered and 
attenuated) Gain = 150



OPA XFROG measurements of a really weak 
(50 aJ) fluorescence-like pulse
The same continuum generated in bulk sapphire (filtered and 
now heavily attenuated).

This measurement involved fewer input photons than our SI 
measurement of less than one photon per pulse.

Gain = 1000



OPA XFROG measurement of a 
broadband (100 nm), weak (50 fJ) pulse

Gain = 1000

2-mm thick BBO

Comparison with 
a measurement 
of the bulk 
continuum at 
higher pulse 
energy (recall 
that continuum is 
unstable, so the 
structure will be 
different)



2 alignment θ
parameters θ

(θ, φ) θ

Can we simplify FROG?

SHG
crystal

Pulse to be 
measured

Variable  
delay

Camera
Spec-
trom-
eter

FROG has 3 sensitive alignment degrees of 
freedom (θ, φ of a mirror and also delay).

The thin crystal is also a pain.

1 alignment   
parameter θ
(delay) θ

Crystal must 
be very thin, 
which hurts 
sensitivity.

SHG
crystal

Pulse to be 
measured

Remarkably, we can design a FROG without these components!

Camera

Collaborators: 
Mark Kimmel, Selcuk 
Akturk, and Patrick 

O’Shea



We can greatly simplify FROG!

FROG:
Frequency-

Resolved
Optical
Gating

GRENOUILLE:
GRating-

Eliminated
No-nonsense

Observation of
Ultrafast
Incident

Laser
Light

E-fields

A single optic (a Fresnel biprism) replaces the entire delay line, and
a thick SHG crystal replaces both the thin crystal and spectrometer.

Winner, 
2003 

R&D100 
award



Single-Shot FROG and the Fresnel biprism 
Crossing beams at a large angle maps delay onto transverse position.

This avoids manually scanning the delay.  But it still requires over-
lapping the beams in space (and time).  Here’s how we avoid even that:

Even better, this design 
is amazingly compact and 
easy to use, and it never 
misaligns!

Pulse #1

Pulse #2

Here, pulse #1 arrives
earlier than pulse #2
Here, pulse #1 and pulse #2
arrive at the same time

Here, pulse #1 arrives
later than pulse #2

Fresnel
biprism



Very thin crystal creates broad SH spectrum in all directions.
Standard autocorrelators and FROGs use such crystals. 

Very
Thin
SHG

crystal

Thin crystal creates narrower SH spectrum in
a given direction and so can’t be used

for autocorrelators or FROGs.

Thin
SHG

crystal

Thick crystal begins to 
separate colors.

Thick
SHG crystalA very thick crystal acts like a

a spectrometer!  Why not replace the 
spectrometer in FROG with a very thick crystal? Very

thick crystal

Suppose white light with a large divergence angle impinges on an SHG 
crystal. The SH generated depends on the angle. And the angular width of 
the SH beam created varies inversely with the crystal thickness.

The angular width of second harmonic varies 
inversely with the crystal thickness.



GRENOUILLE Beam Geometry
Lens images position in crystal 

(i.e., delay, t) to horizontal 
position at camera

Top
view

Side
view

Cylindrical
lens

Fresnel
Biprism

Thick
SHG

Crystal

Imaging Lens

FT Lens

Yields a complete single-shot FROG.  Uses the standard FROG algorithm.  
Never misaligns. Is more sensitive. Measures spatio-temporal distortions!

Camera

Lens maps angle (i.e.,
wavelength) to vertical

position at camera



Testing 
GRENOUILLE

Compare a GRENOUILLE 
measurement of a pulse 
with a tried-and-true 
FROG measurement of the 
same pulse:

Retrieved pulse in the time and frequency domains

GRENOUILLE FROG
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Really Testing 
GRENOUILLE

GRENOUILLE 
accurately 
measures 
even complex 
pulses.

GRENOUILLE FROG

M
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d
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Retrieved pulse in the time and frequency domains

Read more 
about 

GRENOUILLE 
in the cover 

story of OPN, 
June 2001



Spatio-temporal distortions in pulses
Prism pairs and simple tilted windows cause “spatial chirp.”

Gratings and prisms cause both spatial chirp and “pulse-front tilt.”

Prism pair



-τ0

+τ0

SHG
crystal

ω − δω

ω 

2ω + δω

2ω − δω

2ω 

Signal pulse 
frequency

Delay
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2ω+δω

2ω−δω

+τ0-τ0

ω + δω

ω − δωω 

Tilt in the otherwise symmetrical SHG 
FROG trace indicates spatial chirp!

ω + δω

ω 

Fresnel  
biprism

Spatially 
chirped 

pulse

GRENOUILLE measures spatial chirp.



Zero relative 
delay is off 
to side of 
the crystal

Zero relative 
delay is in 
the crystal 
centerSHG

crystal

An off-center trace indicates the pulse front tilt!

GRENOUILLE measures pulse-front tilt.



To learn more, visit our web sites…

www.swampoptics.com

www.physics.gatech.edu/frog

And if you read only one 
ultrashort-pulse-measurement 

book this year, make it this one!


